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M O T I O N  OF A S P H E R E  IN A V I B R A T I N G  L I Q U I D  I N  T H E  P R E S E N C E  OF A WALL 

V. L. Sennitskii  UDC 532.582 

A solution is obtained for the problem of the motion of a sphere in an ideal liquid bounded from 
outside by a wall which performs stIecified vibrations far from the sphere. 

Theoretical problems of the motion of a solid in a vibrating liquid have been studied [1-6] (see also [7]) 
to reveal and study the effects of mean motion of the solid in the liquid. Originally, the interest in problems 
of this kind was motivated by appearance of the results showing that a solid in a vibrating liquid can behave 
in a paradoxical manner [8]. However, soon it became obvious that the studies of the motion of inclusions in 
a vibrating liquid that followed the publication of [8] are of greater independent significance. In particular, 
results of studies in this region can be used to perform vibrational control of inclusions in a liquid [9]. 

In the present paper, we consider the problem of the motion of a solid sphere in an ideal liquid that 
is bounded from outside by a planar wall vibrating in a specified manner. At infinity, the liquid also perform 
specified vibration along the wall surface (at infinity the liquid flow rate varies periodically in a specified 
manner). At small (compared to unity) ratios of the radius of the sphere to the distance between the center 
of the sphere and the wall surface; the force interaction between the liquid and the sphere is determined; the 
motion of the sphere is established; the liquid vibrations along the wall surface and the vibrations along the 
normal to the wall surface (caused by vibrations of the wall) depend greatly on the motion of the sphere; it is 
shown that a sphere whose density is different from the liquid density can neither rise nor sink, sink instead 
of rising, and rise instead of sinking and rise more slowly, sink more slowly, rise more rapidly, and sink more 
rapidly than in the absence of vibrations. The question of which liquid vibrations are most effective is also 
examined. 

1. An absolutely rigid sphere is present in an ideal incompressible liquid bounded from outside by the 
planar surface of an absolutely rigid wall (see Fig. 1). There is a constant gravity field. The sphere is located 
above or under the wall. At the initial time t (for t = 0), the wall, the liquid, and the sphere are at rest 
relative to the inertial coordinates Xil, Xi2, and Xi3, the wall surface coincides with the plane Xil  -~ 0, the 
region occupied by the liquid is in the half-space Xil /> 0, and the center of the sphere is on the )(ix axis. 
At subsequent times, the wall performs specified periodic translational vibrations with period T, and as a 
result, the liquid at infinity vibrates periodically with period T about the Xil axis. In addition, the liquid at 
infinity vibrates periodically with period T about the Xi3 axis (along the wall surface); the flow is potential 
and symmetric about the plane Xi2 = 0, and the sphere performs translational motion. The position of the 
wall is defined by the radius-vector 

H =(H,O,O) 

of the point of intersection of the wall surface and the Xil axis. Here 

H = A0 + ~ Am cos 2m~r ~ + AT, sin 2mTr , 
rn=l 
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Fig. 1 

where A0, Am, and A~m are constants, and H = 0 and dH/dt  = 0 for t = 0. The liquid at infinity moves at 
velocity 

Here 

U = ( U 1 , 0 ,  g3 ) .  

U1 = --~; U3 = ~ Brn cos 2rn~'T + B'm sin 2m~r , 
rn= l  

where B,,, and Bin are constants,  and U3 = 0 for t = 0. The position of the sphere is given by the  radius-vector 

s = ( s l ,  0, $3) 

of the center of the sphere. It is required to determine how S depends on t. 
This formulation of the problem corresponds to the following: there is a closed tank filled with a liquid 

containing a sphere; all the walls of the vessel but  one having a planar surface are at large distances from the 
sphere; the tank performs specified translational vibrations. 

The problem of the motion of a sphere in an ideal liquid bounded from outside by a vibrating rigid 
planar wall was considered in [3, 6]. Lugovtsov and Sennitskii [3] showed that  a sphere with lower density 
than the liquid density can sink instead of rising and a sphere whose density is higher than the  liquid density 
can rise instead of sinking. Sennitskii [6] de te rmined  the motion of a sphere in the absence of a gravity force. 
The results of [3, 6] agree with the corresponding results of the present paper. 

For Psph = Pliq (Psph is the density of the  sphere and Pliq is the liquid density), the  problem of the 
motion of a sphere has the trivial solution 

t 

0 

where S0 = (So, 0, 0) is a constant (the value of S at t = 0). Solution (1.1) corresponds to the sphere, liquid, 
and the wall (vessel) moving at the same velocity (as an absolutely rigid body). 

We set Psph # Pliq- We consider the liquid flow and the motion of the sphere relative to the  rectangular 
coordinates X1 = X i l  - H, )/'2 = X i 2 ,  and X3 = X i 3  - $ 3 .  

We assume that  e l  = (1,0,0), e 2 ~-~ (0,1,0),  e3 = (0,0,1), r = Xlea + X2e2 + X3e3, r = [r[, 
Z = S - He1 - $3e3 = Z e l  is the radius-vector of the center of the sphere, (q) is the surface of the sphere, 
n is the outer  unit  normal  to (q), (Q) is the surface of the wall, N is a normal to (Q), @ is the liquid-velocity 
potential, P is the liquid pressure, 

= - ~ P n  dq (1.2) F 

O) 

is the force exerted on the sphere by the liquid, m is the mass of the sphere, g = - g e l  is the free-fall 
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acceleration (for g > 0, the sphere is located above the wall and for g < 0, it is located under the wall), 
A = (d2H/dt2)el + (d2S3/dt2)e3, and I is an arbitrary function of t. 

The equation of motion of the sphere, the Cauchy-Lagrange integral, the continuity equation, and the 
conditions that must be satisfied on (q) and (Q) as r --+ cr and for t = 0, have the form 

d2 Z 
m dt 2 = F + m ( g - a ) ;  (1.3) 

0~ ~ P 
0-7 + ( w ) 2  + + (A - a ) .  r = I; (1.4) 

Pliq 

A r  = 0; (1.5) 

dZ 
n - r O b  = n . e l - ~ -  on (q); (1.6) 

N . V ~  = 0 on (Q); (1.7) 

V ~ -  (u3 - d~--'~)e3 as r--+oo; (1.8) 

dZ dS3 
Z = S o ,  d-T=0, $ 3 = 0 ,  dt = 0  for t = 0 .  (1.9) 

2. We assume that the quantity ~ = a/So (a is the radius of the sphere) is small compared to unity 
and the largest values of IHI/a , (T/a)ldH/dt[, and (T2/a)ld2g/dt21 and the quantity (IglT2S4)l/5/a are not 
small and not large compared to unity. 

We determine the liquid flow produced by the specified motion of the sphere. We assume that the wall 
is absent and the liquid is not bounded from outside and at infinity it moves at velocity (U3- dSa/dt)e3. There 
are two spheres present in the liquid: the sphere considered and an auxiliary sphere with radius a. The radius- 
vectors of the centers of the spheres are Z and - Z ,  respectively, and the spheres move at velocities dZ/dt  
and - d Z / d t ,  respectively. Then, the liquid flow is symmetric about the plane X1 = 0: The liquid-velocity 
potential �9 is a solution of the problem 

A ~  = 0, 
dZ 

n . Vk~ = rt . el ---d- [ on (q), 

dZ 
n ' . V q r  = - n ' - e l - ~ -  on (q'), 

( Vffr "~ U a - - - - ~ ' ] e 3  as r - - + o o ,  

and it satisfies the condition 

N.V =O on (Q). 

Here (q') is the surface of the auxiliary sphere and n '  is a normal to (q'). Outside the region occupied by the 
liquid in the half-space X1 >/0, the following equality holds: 

V ~  = Vr  (2.1) 

Employing the method of [10] to determine the velocity potential of the liquid flow produced by the specified 
motion of the two spheres and taking (2.1) into account, we obtain the following solution of problem (1.5)- 
(1.8), which exactly satisfies (1.5), (1.7), and (1.8) and approximately satisfies (1.6) [with accuracy up to the 
quantities proportional to dZ/dt and U3 -dSa /d t ,  which are small compared to G 4 dZ/dt and E4(U3 -dSa /d t ) ,  
respectively]: 

a dZ a 2 ~3 a3 a2 --/~3 \Pl(cos8 '  ) 
r  dt [ -  - ~ ( l  + ~z3)Pl(c~ + e'SR3z'P2(c~ +-~'2( 1+ 8z 3] 
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_}_~4 -- - -  -J[- " ~ ' \ 1  "4- 1--6-~Z3)] P~l ) (cos  0) 

a 3 a 2 ~3 a 3 
- g 4 - -  p(1)(cosO) + - ~ ( l  + 1-~z3)P~l)(cosO') +~4 - -  P(1)(cosO')}sin~ 24Rt 3z4 (2.2) 

where z ---- Z/So, R = ~ / ( X l  Z) 2"4-X 2-[-X 2, cos0 = (Xl - Z)/R,  R' = ~/ (Xl -kZ)  2 + X  2 + X  2, 

cost?'= (X1 + Z) /R ' ,  s i n ~ =  Xa/~/X 2 + X 2, and cis  an arbitrary function of t. 
Using (1.2), (1.4), and (2.2), we obtain 

r 47ra3 Pliq([ d2g d2Z - i fdZN2 (V3 d"q3 "~ 2 g]el 
3 Ldt2 +fl-~+f2a L--~) +f3a-1 - -  + 

- - d F J  

+[--~--  -4- ]'4 - -  dt 2 ) + f5 a-1 -~--~, 3 - "-'~-jj j ,  

where  

f 1 = - 2  l+8z3j,  f2-32z4,  fa-- 64z4' A =  1 + ~  , fs---a2z4. 
Relation (2.3) gives the force interaction between the liquid and the sphere (for the specified motion 

of the sphere). 
3. According to (1.3), (1.9), and (2.3), we have 

d2z d2h ca[  d2z 3 fdz~ 2 3e2/" ds 2] 
dv 2 = -r 2 + A ~ _  - ~ + "~z \dT ] -- "~z~, u -- ~ )  , -- r (3.1) 

[( dr-~ = A 8 1 + ~ dr  2z 3 dr- 2 2z 4 dr. u - ~ ; (3.2) 

dz ds 
z = l, dr. O, s = O, dr. 0 for 7 . = 0 ,  (3.3) 

where 

t S3 H U3T gT 2 Psph -- Pliq 3pliq 
r = ~ ,  S = - -  h = - - , u =  , 3 , =  , ~e= , A =  . 

a ' a a ~4a Psph -4- (1/2)Pliq 16(Psph + (1/2)Pliq) 

We use the averaging method of [11, 12]. Let q and ~ be variables related to z and s by the equalities 

z = q - ~zeh + ~4~Ahr1-3, (3.4) 
7" 

= ~-2~ + 8~ [ u d~, S (3.5) 
0 

and 

X = e-5/2 dq 
tiT' (3.6) 

~b = e -5/2 d___~ (3.7) 
dr" 

According to (3.3)-(3.7), q, X, ~, and O satisfy the conditions 

7 / = 1 ,  x=O for 7 = 0 ;  (3.8) 

~ = 0 ,  O = 0  for 7 -=0 .  (3.9) 

Using (3.4)-(3.7), we reduce (3.1) and (3.2) to a normal system of equations. Representing the right sides of 
the equations containing dx/dr, and dO~dr, in the form of series in powers of ~ and retaining only the principal 
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terms of the series, we convert from the normal system of equations to the following system of equations in 
standard form: 

dq 
d-'-T = r X' 

_ = 1 

dr 

d e  1 es/2ae A du ,7_3. 
dr  -- 2 ~TT 

Averaging (3.10) over the explicitly contained r ,  we obtain 

dq dx -r + 7); d-~ = esI2x' d---r = 

d~ = r 1 6 2  ~ = O, 
dT" dr 

where 

1 1 [ (dh~ 2 l u 2 ] d  T 
k = - ~ / [ \ d r ]  + 0 

From (3.9) and (3.12) it follows that 

~r 2 c~ T 2 oo 
= E ( B2 + B2)" m--lZ m2( A2  + AZ) + ~a 2 m=l 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

= 0. (3.14) 

According to (3.5) and (3.14), the average motion of the sphere along the Xi3 axis is absent. According to 

q = l ,  

(3.8) and (3.11), we have 

where 

d2r/ = e57ae(uq -4 - 1), (3.15) 
d7 2 

d~ 
dr  = 0  for v = 0 ,  (3.16) 

~e~k 
u = - 3  - -  (3.17) 

7 

q = l  for v = l ,  (3.18) 

J = + for 0 < v < 1, (3.19) 

J = - #  for v < 0, v > 1, (3.20) 

Solving problem (3.15), (3.16), we obtain 

where 

Z 312 dx 

~/(Ta~/]7~el)(1  - z ) [ Z  3 - ( u / 3 ) ( z  2 + z + 1)] 

Relations (1.1), (3.4), (3.5), (3.14), and (3.18)-(3.20) define the dependence of S on t, i.e., the motion 
of the sphere relative to the Xil, Xi2, and Xi3 coordinates. In particular, for 0 < u < 1, the sphere moves on 
the average along the  Xil axis in a direction away from the wall [according to (3.19), q increases monotonically 
with increase in "~]; for u < 0 and u > 1, the sphere moves on the average along the Xn axis toward the wall 
[according to (3.20), r/decreases monotonically with increase in e]. 
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According to (2.3), (3.4), (3.5), (3.14), and (3.18)-(3.20), a sphere whose density is different from the 
liquid density is a t t racted on average to the wall because of the vibrations of the liquid. In view of this, the 
examined vibration actions of the liquid with the sphere show controlling possibilities. These actions can lead, 
in particular, to a paradoxical behavior of the sphere. That  is, for u = 1, the sphere neither rises nor sinks 
(it is in the state of "levitation"); for u > 1, a sphere under the wall with higher density than the liquid 
density rises. Furthermore,  a sphere can rise or sink more slowly (for 0 < u < 1) or rise or sink more rapidly 
(for u < 0) than in the absence of liquid vibrations. According to (3.13) and (3.17), the motion of the sphere 
is significantly influenced by liquid vibrations along the normal to the wall surface and by liquid vibrations 
along the wall surface. 

We note that ,  with no gravity, in the presence of liquid vibrations, and with satisfaction of the condition 
Psph ~ Pliq, the sphere moves along the Xi] axis toward the wall. 

4. We briefly consider the question of the most effective liquid vibrations (how the liquid vibrations 
along the normal to the wall surface must be related to the vibrations along the wall surface in order that the 
force exerted on the sphere by the liquid be the greatest). 

In the above formulation of the problem, a liquid and a sphere are in a tank performing specified 
translational vibrations. Let these vibrations proceed along the axis whose direction coincides with the 
direction of the vector e = (sin c~, 0, cos ~) Then,  the following relations must be hold: 

where 

U = Ue, (4.1) 

U1 = U sin a, U3 = U cos a, 

U = ~ Cmcos2rn~r ~ + C msln2rnw 
r n = l  

(Cm are and C~ are constants). According to (3.13) and (4.1), we have 

T 2 (  1 ) oo 
k = 1 - { c o s  + (4 .2)  

r n : l  

We consider the force exerted by the liquid on the sphere in the following two cases. 
Case 1. The sphere is immovable (fixed) relative to the Xn,  Xi2, and Xi3 coordinates. 
Using (2.3), we obtain 

F=~'+Fb+F, , ,  

where F is a periodic function of t (force) with period T, whose average value is zero, Fb = (47ra3/3)pliqgel 
is the buoyancy force, and 

37ra4pliq 
Fv  = 4T 2 ~4kel (4.3) 

is the time-independent force exerted on the sphere by the liquid because of the liquid vibrations. 
Case 2. The sphere does not rise and does not sink relative to the coordinates Xn ,  Xi2, and Xi3. Using 

(2.3), (3.4), (3.5), (3.14), and (3.18), we obtain 

F ~' : + Fb + Fv, 

where F '  is a periodic function of t (force) with period T, whose average value is equal to zero and 

37ra4pliq ~4ae2kel (4.4) 
F "  - 4T 2 

is the time-independent force exerted on the sphere by the liquid due to the liquid vibrations. 
From (4.2)-(4.4) it follows that [Fvl and [F'v[ reach maximum values for a = ~r/2. According to this, 

the liquid vibrations along the normal to the wall surface are most effective. 
We are grateful to T. G. Sozinova for participating in discussions of the problem. 
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